LOCAL PROPERTIES OF FAMILIES OF PLANE CURVES

ROBERT TREGER

Introduction

Let \mathbf{P}^N be the projective space parametrizing all projective plane curves of degree n (N=n(n+3)/2). For $d\geq 1$, we let $\Sigma_{n,d}\subset \mathbf{P}^N\times \mathrm{Sym}^d(\mathbf{P}^2)$ be the closure of the locus of pairs $(E,\Sigma_{i=1}^dP_i)$, where E is an irreducible nodal curve and P_1,\cdots,P_d are its nodes. The purpose of this paper is to prove the following theorem.

Theorem. The variety $\Sigma_{n,d}$ is unibranch everywhere.

The variety $\Sigma_{n,d}$ plays an important role in the study of the family of irreducible plane curves of degree n with d nodes and no other singularities as well as the locus $V(n,g) \subset \mathbf{P}^N$ of reduced and irreducible curves of genus g, where g = (n-1)(n-2)/2 - d. We mention two corollaries.

Corollary 1 (Harris [5]). The variety $\overline{V(n,g)} \subset \mathbf{P}^N$ is irreducible.

Corollary 2. The locus V(n, g) is unibranch everywhere.

It is well known that $\overline{V(n,g)}$ is not unibranch everywhere [3], [5, §1], [6, Lecture 3], [10, §11]. We now prove the corollaries. Recall a result of Arbarello and Cornalba [1] and Zariski [13]: the general members of V(n,g) have d=(n-1)(n-2)/2-g nodes and no other singularities. It follows that the projection of $\Sigma_{n,d}$ to \mathbf{P}^N coincides with $\overline{V(n,g)}$. Every component of $\Sigma_{n,d}$ contains a pair of the form $(\Sigma_{r=1}^n L_r, dP)$, where the lines L_r $(1 \le r \le n)$ meet only at P, and by the deformation theory, $\Sigma_{n,d}$ contains all such pairs [6, Lecture 3, §2], [10, §11]. It is clear that these pairs form an irreducible family. Hence $\Sigma_{n,d}$ is irreducible by our theorem. It follows that $\overline{V(n,g)}$ is also irreducible.

We now prove Corollary 2. Let C be an arbitrary member of V(n,g). For a point $P \in C$, we set $\delta_P = \dim_C \widetilde{O}_P/O_P$, where O_P is the local ring of C at P, and \widetilde{O}_P its normalization. By the genus formula, $\Sigma_{Q \in C} \delta_Q = d$ [7, Theorem 2]. Therefore if a nodal member of V(n,g) specializes to C, then exactly δ_P of its nodes specialize to $P \in C$ [12, §3.4]. Hence C

Received January 16, 1990, and, in revised form, April 10, 1992.

is the projection of a unique pair $(C, \Sigma_{i=1}^d Q_i) \in \Sigma_{n,d}$. Since V(n, g) is open in $\overline{V(n, g)}$ [7, Theorem 5], Corollary 2 follows from the theorem.

The proof of the theorem relies on the result of Arbarello and Cornalba and Zariski and its generalization by Harris [5, §2].

The author wishes to thank the referee for very helpful remarks.

Proof of the theorem

We fix $d \ge 1$ and prove the theorem by decreasing induction on n. For each n, we consider the projections $\pi \colon \Sigma_{n,d} \to \mathbf{P}^N$ and $\pi_d \colon \Sigma_{n,d} \to \operatorname{Sym}^d(\mathbf{P}^2)$ (by abuse of notation we omit the index n).

For $n\gg d$, the theorem is elementary. Indeed, $\operatorname{Sym}^d(\mathbf{P}^2)$ is obviously unibranch everywhere. For $n\gg d$, π_d is surjective and its general fiber is a linear system of curves with d assigned singularities. Let $S\subset\operatorname{Sym}^d(\mathbf{P}^2)$ denote the singular locus. Outside S, π_d is a bundle whose fibers are canonically isomorphic to linear subspaces of \mathbf{P}^N . Hence $\Sigma_{n,d}\backslash\pi_d^{-1}(S)$ is unibranch everywhere.

Let $\operatorname{Sym}^d(\mathbf{P}^2)\subset \mathbf{P}^M$ be a closed imbedding. For a point $v\in\pi_d^{-1}(S)$, we consider a fundamental system of polycylinders $\{U_\gamma\}$ in $\mathbf{P}^N\times\mathbf{P}^M$ containing v. Set $U_\gamma'=U_\gamma\cap\Sigma_{n,d}$. We get a fundamental system of neighborhoods $\{U_\gamma'\}$ of v in $\Sigma_{n,d}$. Let $\eta,\xi\in\Sigma_{n,d}$ be two distinct points such that $\pi(\eta)$ and $\pi(\xi)$ are nodal curves and $\pi_d(\eta)=\pi_d(\xi)$. Then $\pi(\Sigma_{n,d})$ contains the line in \mathbf{P}^N passing through $\pi(\eta)$ and $\pi(\xi)$.

We consider a decomposition of $U_\gamma' \setminus (U_\gamma' \cap \pi_d^{-1}(S))$ in a union of its connected components. Projecting these components to $\operatorname{Sym}^d(\mathbf{P}^2)$, we obtain a decomposition of $\pi_d(U_\gamma') \setminus S$ in a disjoint union of *open* subsets. Since $\operatorname{Sym}^d(\mathbf{P}^2)$ is unibranch, the latter decomposition must be trivial. Hence $U_\gamma' \setminus (U_\gamma' \cap \pi_d^{-1}(S))$ is connected, and $\Sigma_{n,d}$ is unibranch at v.

We now suppose that $\Sigma_{n+1,d}$ is unibranch everywhere. Let $(C, \Sigma_{i=1}^d Q_i)$ be an arbitrary point of $\Sigma_{n,d}$. Let $l \in \mathbf{P}^2$ be a fixed line in *general* position with respect to $(C, \Sigma_{i=1}^d Q_i)$, and $p \in l \setminus C$ a fixed point. We set $\alpha = (C + l, \Sigma_{i=1}^d Q_i)$. To get rid of l we need two general lemmas.

Recall that a noetherian topological space W is connected in codimension 1 if and only if for every closed subspace $K \subset W$ of codimension ≥ 2 , the set $W \setminus K$ is connected.

Lemma 1. Let A be a complete local noetherian domain. Let h_1 , \cdots , h_m be elements of A, and $B = A/(h_1, \cdots, h_m)$. If $\dim A = \dim B + m$, then $\operatorname{Spec}(B)$ is connected in codimension 1.

Proof of Lemma 1. See [4, Exp. XIII, Theorem 2.1].

Following Harris [5, §2], for $m \leq n$, we let $\Sigma_{n,d,m} \subset \Sigma_{n,d}$ be the closure of the locus of pairs $(F, \Sigma_{i=1}^d R_i)$, where F is an irreducible nodal curve having smooth contact of order at least m with l at p. Let \mathbf{P}^{N_l} be the projective space parametrizing all projective plane curves of degree n+1. We consider a small open analytic neighborhood $\mathscr{A} \subset \Sigma_{n+1,d}$ of α . Let $(E, \Sigma_{i=1}^d P_i)$ be a point of \mathscr{A} , and let

$$f_E(X, Y, Z) = \sum a_{jk} X^j Y^k Z^{n+1-j-k} = X(\cdots) + \sum a_{0k} Y^k Z^{n+1-k}$$

be an equation of E. We have chosen our coordinate system in \mathbf{P}^2 such that $l=\{X=0\}$ and p=(0:1:0). For $m\geq 1$, the condition $a_{0n+1}=\cdots=a_{0n+2-m}=0$ means that E has contact of order at least m with l at p (if $E\supset l$, then by definition, they have contact of order ∞ at p). We set

$$\Sigma_{n+1,d,n+2} = \{ (D+l, \Sigma_{i=1}^d R_i) | (D, \Sigma_{i=1}^d R_i) \in \Sigma_{n,d} \}.$$

For sufficiently small \mathscr{A} , the curves of $\pi(\mathscr{A})$ have no singularities at p and the supports of the cycles of $\pi_d(\mathscr{A})$ do not intersect l. For each m, $0 \le m \le n+2$, the general points of $\Sigma_{n+1,d,n+2}$ belong to $\Sigma_{n+1,d,m}$ [5, §2], hence $\alpha \in \Sigma_{n+1,d,m}$. It follows from the semistable reduction theorem for families of curves and dimension counts that the locus of nonreduced curves has codimension strictly greater than 1 in $\pi(\Sigma_{n+1,d,m} \cap \mathscr{A})$ for $0 \le m \le n+2$, [2, §1(a)], [5, §2], [9].

Lemma 2. For an integer m, $0 \le m \le n+2$, let E be a general point of an arbitrary codimension 1 subfamily of $\pi(\Sigma_{n+1,d,m} \cap \mathscr{A})$. Then E has at most one non-nodal singularity which is a cusp, a tacnode, or an ordinary triple point. Furthermore, $\Sigma_{n+1,d,m} \cap \mathscr{A}$ is smooth at all points corresponding to E.

Proof of Lemma 2. For m=0 or n+2, the lemma is known; see [2, $\S1(a)$]. Since $\dim \Sigma_{n+1,d,m} = \dim \Sigma_{n,d} + n + 2 - m$ [5, $\S2$], by taking the corresponding hyperplane sections, we reduce the proof of the first part of the lemma to the case m=n+2.

We now assume that our E is a member of $\pi(\Sigma_{n+1,d,m} \setminus \Sigma_{n+1,d,m+1})$ of genus g(E) = n(n-1)/2 - d; the remaining cases are similar only easier. We apply a general argument of Harris [5, §2]. For $i = 0, 1, \dots, m$, we blow up the plane i times at p in the direction of l; let $S_i \to \mathbf{P}^2$ be the

corresponding morphism, and K_{S_i} the canonical divisor on S_i . Let E_i be the proper transform of E in S_i , and $\varphi_i \colon \widetilde{E} \to E_i$ the normalization morphism. We have $-E_m \cdot K_{S_m} = 3(n+1) - m$ [5, p. 451]. Therefore, for i=0 or m, the deformations of the pair $(\widetilde{E},\varphi_i)$ are parametrized by a germ \mathscr{D}_i of a smooth manifold of dimension

$$3(n+1) + g(E) - 1 - i = N_1 - d - i = \dim \Sigma_{n+1,d} - i$$

and there is a natural immersion $\mathscr{D}_m \hookrightarrow \mathscr{D}_0$ [8], [11, 1.3-1.6]. On the other hand, $\Sigma_{n+1,d}$ is smooth at $\pi^{-1}(E)$ and, in a neighborhood of E, π^{-1} is a one-to-one map [2, §1(a)]. Hence there is a natural analytic isomorphism between \mathscr{D}_0 at $(\widetilde{E}, \varphi_0)$ and $\Sigma_{n+1,d}$ at $\pi^{-1}(E)$. The image of \mathscr{D}_m in $\Sigma_{n+1,d}$ lies in $\Sigma_{n+1,d,m}$. Thus $\Sigma_{n+1,d,m}$ is smooth at $\pi^{-1}(E)$. This proves the lemma.

We now finish the proof of the theorem. Let $\mathscr B$ denote the locus in $\mathscr A$ of the solutions of n+2 equations corresponding to the n+2 elements: a_{0n+1} , \cdots , a_{00} . It is clear that $\Sigma_{n+1,d,n+2} \cap \mathscr A \subset \mathscr B_{\rm red}$.

To compute $\dim \mathcal{B}$, we apply [5, §2]. For $1 \leq m \leq n+1$, let $(D, \Sigma_{i=1}^d R_i)$ be a general point of the locus in \mathcal{A} of the solutions of m equations corresponding to the m elements: $a_{0n+1}, \cdots, a_{0n+2-m}$. Since $R_1, \cdots, R_d \notin l$, $l \not\subset D$ and D has contact of order m with l at p, provided D is reduced; moreover, D is reduced, as before, by the semistable reduction theorem. So

$$\dim \mathcal{B} = \dim \Sigma_{n+1,d} - n - 2 = \dim \Sigma_{n+1,d,n+2}.$$

By Lemma 1, \mathscr{B} is connected in codimension 1 at α . Hence, by Lemma 2 (with m=n+2), $\mathscr{B}_{\mathrm{red}}=\Sigma_{n+1,d,n+2}\cap\mathscr{A}$ and $\Sigma_{n+1,d,n+2}$ is unibranch at α . Therefore $\Sigma_{n,d}$ is unibranch at $(C,\Sigma_{i=1}^dQ_i)$. This proves the theorem.

References

- E. Arbarello & M. Cornalba, Su una proprietá notevole dei morfismi di una curva a moduli generali in uno spazio proiettivo, Rend. Sem. Mat. Univ. Polytec. Torino 38 (1980) 87-99.
- [2] S. Diaz & J. Harris, Geometry of the Severi variety, Trans. Amer. Math. Soc. 309 (1988) 1-34.
- [3] W. Fulton, Algebraic Geometry—Open Problems, Proc. Ravello, 1982 (C. Ciliberto, F. Chione, and F. Orecchi, eds.), Lecture Notes in Math., Vol. 997, Springer, Berlin, 1983, 146-155.
- [4] A. Grothendieck et al., Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux, North-Holland, Amsterdam, 1968.

- [5] J. Harris, On the Severi problem, Invent. Math. 84 (1986) 445-461.
- [6] _____, Curves and their moduli, Algebraic Geometry, Proc. Sympos. Pure Math. (S. Bloch, ed.), vol. 46, Part 1, Amer. Math. Soc., Providence, RI, 1987, 99-143.
- [7] H. Hironaka, On the arithmetic genera and the effective genera of algebraic curves, Mem. College Sci. Kyoto, Ser. A 30 (1957) 177-195.
- [8] E. Horikawa, On deformations of holomorphic maps. I, J. Math. Soc. Japan 25 (1973) 372-396.
- [9] A. Nobile, Genera of curves varying in a family, Ann. Sci. École Norm. Sup. (4) 20 (1987) 465-473.
- [10] F. Severi, Vorlesungen über algebraische Geometrie, Anhang F, Teubner, Leipzig, 1921.
- [11] A. Tannenbaum, On the classical characteristic linear series of plane curves with nodes and cuspidal points: two examples of Beniamino Segre, Compositio Math. 51 (1984) 169-183.
- [12] B. Teissier, *The hunting of invariants in the geometry of discriminants*, Real and Complex Singularities (P. Holm, ed.), Sijthoff and Noordhoff, Groningen, 1977, 605-634.
- [13] O. Zariski, Dimension-theoretic characterization of maximal irreducible algebraic systems of plane nodal curves of a given order n and with a given number d of nodes, Amer. J. Math. 104 (1982) 209-226.

4 Mountain View Terrace #14 Latham, NY 12110